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therefore, by the first process in the sequence, which is the transfer of energy
from the largest eddies. These eddies have energy of order u3 and timescale
7o = £o/uo, and so the rate of energy transfer can be supposed to scale as
u3 /o = ud /¢y. Consequently, consistent with the experimental observations
in free shear flows, this picture of the cascade indicates that e scales as ug /4o,
independent of v (at the high Reynolds numbers being considered).

6.1.2 Kolmogorov Hypotheses

Several fundamental questions remain unanswered. What is the size of the
smallest eddies that are responsible for dissipating the energy? As ¢ de-
creases, do the characteristic velocity and timescales u(¢) and 7(¢) increase,
decrease or remain the same? (The assumed decrease of the Reynolds num-
ber u(¢)¢/v with £ is not sufficient to determine these trends.)

These questions and more are answered by the theory advanced by Kol-
mogorov (1941b) ! which is stated in the form of three hypotheses. A conse-
quence of the theory which Kolmogorov used to motivate the hypotheses
is that both the velocity and timescales u(#) and 7(¢) decrease as ¢ decreases.

The first hypothesis concerns the isotropy of the small-scale motions.
In general, the large eddies are anisotropic and are affected by the bound-
ary conditions of the flow. Kolmogorov argued that in the chaotic scale-
reduction process, by which energy is transferred to successively smaller
and smaller eddies, the directional biases of the large scales are lost. Hence
(approximately stated):

Kolmogorov’s Hypothesis of Local Isotropy. At sufficiently
high Reynolds number, the small-scale turbulent motions (¢ <
¢y) are statistically isotropic.

(The term “local isotropy” means isotropy only at small scales, and is defined
more precisely in Section 6.1.4.) It is useful to introduce a lengthscale ¢,
(with 45, = ééo, say) as the demarcation between the anisotropic large
eddies (£ > £g;) and the isotropic small eddies (¢ < ¢z;). (Justification for
this specification of £5;, and of other scales introduced below, is provided in
Section 6.5.)

Just as the directional information of the large scales is lost as the energy
passes down the cascade, Kolmogorov argued that all information about the

! An English translation of this paper is reproduced as Kolmogorov (1991) in a special
issue of the Proceedings of the Royal Society published to mark the 50th anniversary of
the original publication. The other papers in this issue, which relate to the Kolmogorov
hypotheses, are also of interest.
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geometry of the large eddies—as determined by the mean flow field and
boundary conditions—is also lost. As a consequence, the statistics of the
small-scale motions are in a sense universal—similar in every high-Reynolds
number turbulent flow.

On what parameters does this statistically-universal state depend? In
the energy cascade (for £ < £,,) the two dominant processes are the transfer
of energy to successively smaller scales, and viscous dissipation. A plausible
hypothesis, then, is that the important parameters are the rate at which
the small scales receive energy from the large scales (which we denote by
Tz1), and the kinematic viscosity v. As we shall see, the dissipation rate ¢ is
determined by the energy transfer rate T;, so that these two rates are nearly
equal, i.e., ¢ = T5;. Consequently, the hypothesis that the statistically-
universal state of the small scales is determined by v and the rate of energy
transfer from the large scales 7Tz; can be stated as:

Kolmogorov’s First Similarity Hypothesis. In every tur-
bulent flow at sufficiently high Reynolds number, the statistics
of the small-scale motions (¢ < fz;) have a universal form that
is uniquely determined by v and e.

The size range ¢ < {z; is referred to as the universal equilibrium range. In
this range, the timescales £/u(¢) are small compared to £y/ug, so that the
small eddies can adapt quickly to maintain a dynamic equilibrium with the
energy transfer rate 7Tz, imposed by the large eddies.

Given the two parameters € and v, there are (to within multiplicative
constants) unique length, velocity and time scales that can be formed. These
are the Kolmogorov scales:

n= (e, (6.1)
Uy = (ev)7, (6.2)
Ty = (u/e)%. (6.3)

Two identities stemming from these definitions clearly indicate that the
Kolmogorov scales characterize the very smallest, dissipative eddies. First,
the Reynolds number based on the Kolmogorov scales is unity, i.e., nu, /v =
1, which is consistent with the notion that the cascade proceeds to smaller
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and smaller scales until the Reynolds number u(¢)¢/v is small enough for
dissipation to be effective. Second, the dissipation rate is given by

e = vl /) = v/7?, (6.4)

showing that (u,/n) = 1/7, provides a consistent characterization of the
velocity gradients of the dissipative eddies.

Having identified the Kolmogorov scales, we can now state a consequence
of the hypotheses that demonstrates their potency, and clarifies the meaning
of the phrases “similarity hypothesis” and “universal form”. Consider a
point xp in a high-Reynolds-number turbulent flow at a time #y. In terms of
the Kolmogorov scales at (xo, ¢9), non-dimensional coordinates are defined
by

y = (x = x0)/n, (6.5)

and the non-dimensional velocity-difference field is defined by
w(y) = [U(x,t0) — U(xo, t0)] /uy- (6.6)

It is not possible to form a non-dimensional parameter from ¢ and v; and so
(on dimensional grounds) the “universal form” of the statistics of the non-
dimensional field w(y) cannot depend on ¢ and v. Consequently, according
to the Kolmogorov hypotheses stated above, when examined on not too
large a scale (specifically |y| < ¢z;/n), the non-dimensional velocity field
w(y) is statistically isotropic and statistically identical at all points (xg, to)
in all high-Reynolds-number turbulent flows. On the small scales, all high-
Reynolds number turbulent velocity fields are statistically similar; that is,
they are statistically identical when scaled by the Kolmogorov scales (Eqs. 6.5
and 6.6).

The ratios of the smallest to largest scales are readily determined from
the definitions of the Kolmogorov scales and from the scaling & ~ ud /4.
The results are:

0/t ~Re 1, (6.7)

Uy g ~ Re™ 7, (6.8)
and X

Ty/To ~ Re™ 2. (6.9)

Evidently, at high Reynolds number, the velocity and time scales of the
smallest eddies (u, and 7,) are—as previously supposed—small compared
to those of the largest eddies (ug and 7p).
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Inevitably, and as is evident from flow visualization (e.g., Fig. 1.2 on
page 5), the ratio n/¢y decreases with increasing Re. As a consequence, at
sufficiently high Reynolds-number, there is a range of scales ¢ that are very
small compared to ¢y, and yet very large compared to 7, i.e., £y > £ > 1.
Since eddies in this range are much bigger than the dissipative eddies, it may
be supposed that their Reynolds number ¢u(f)/v is large, and consequently
that their motion is little affected by viscosity. Hence, following from this
and from the first similarity hypothesis, we have (approximately stated):

Kolmogorov’s Second Similarity Hypothesis. In every tur-
bulent flow at sufficiently high Reynolds number, the statistics
of the motions of scale £ in the range £y > ¢ > 7 have a universal
form that is uniquely determined by ¢, independent of v.

Tt is convenient to introduce a lengthscale ¢, (with £,; = 607, say), so that
the range in the above hypothesis can be written £5; > £ > £;. This length-
scale £, splits the universal equilibrium range (¢ < £5;) into two subranges:
the inertial subrange (bg; > £ > fp;); and the dissipation range (¢ < £p;).
As the names imply, according to the second similarity hypothesis, motions
in the inertial subrange are determined by inertial effects—viscous effects
being negligible—whereas only motions in the dissipation range experience
significant viscous effects, and so are responsible for essentially all of the
dissipation. The different lengthscales and ranges are sketched in Fig. 6.1.
(We shall see that the bulk of the energy is contained in the larger ed-
dies in the size range {5, = %EO < ¢ < 64y, which is therefore called the
energy-containing range. The suffixes “ET” and “DI” indicate that /z; is
the demarcation line between energy (F) and inertial (I) ranges, as £p; is
that between the dissipation (D) and inertial (I) subranges.)

Length, velocity and time scales cannot be formed from ¢ alone. But
given an eddy size ¢ (in the inertial subrange), characteristic velocity and
time scales for the eddy are those formed from € and ¢:

u(l) = (e0) = uy(6/n) ~ uo(6/lo)%, (6.10)

T(6) = (€)= (E/n)5 ~ 1o(6/40) 5. (6.11)

A consequence, then, of the second similarity hypothesis is that (in the
inertial subrange) the velocity and timescales u(¢) and 7(¢) decrease as ¢
decreases.

In the conception of the energy cascade, a quantity of central importance—
denoted by 7 (¢)—is the rate at which energy is transferred from eddies larger
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Figure 6.1: Eddy sizes £ (on a logarithmic scale) at very high Reynolds number
showing the different lengthscales and ranges.

than ¢ to those smaller than £. If this transfer process is accomplished pri-
marily by eddies of size comparable to ¢, then 7 (£) can be expected to be
of order u(¢)?/7(¢). Stemming from Egs. (6.10) and (6.11), the identity

u(0)?/7(0) =, (6.12)

is particularly revealing, therefore, since it suggests that 7 (¢) is independent
of ¢ (for £ in the inertial subrange). As we shall see, this is the case, and
furthermore 7 (¢) is equal to €. Hence we have

Ter = T(éEI) = T(Z) =Tpr = T(KDI) =g, (6-13)

(for £5; > £ > £p;). That is, the rate of energy transfer from the large scales,
Tz1, determines: the constant rate of energy transfer through the inertial
subrange, T (£); hence the rate at which energy leaves the inertial subrange
and enters the dissipation range 7,,; and hence the dissipation rate ¢. This
picture is sketched in Fig. 6.2.

6.1.3 Energy Spectrum

It remains to be determined how the turbulent kinetic energy is distributed
among the eddies of different sizes. This is most easily done for homogeneous
turbulence by considering the energy spectrum function F(x) introduced in
Chapter 3 (Eq. 3.166).

Recall from Section 3.7 that motions of lengthscale ¢ correspond to
wavenumber x = 27 /¢, and that the energy in the wavenumber range (kq, #p)
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Figure 6.2: Schema of the energy cascade at very high Reynolds number.

is
) = / " B(r) dr. (6.14)

In Section 6.5, E(k) is considered in some detail, and one result of interest
here is that the contribution to the dissipation rate € from motions in the
range (Kq, Kp) 18

Kb
€ (ka k) :/’i 2vk? E(k) dk. (6.15)

It follows from Kolmogorov’s first similarity hypothesis that in the uni-
versal equilibrium range (k > kg; = 27/fg;) the spectrum is a universal
function of € and v. And from the second hypothesis it follows that in the
inertial range (kg; < K < kp; = 2w /€p;) the spectrum is

wlot

E(k) = Cedr 3, (6.16)

where C' is a universal constant. (These assertions are justified in Sec-
tion 6.5.)

To understand some basic features of the Kolmogorov —% spectrum, we
consider the general power-law spectrum

E(k) = Ak7P, (6.17)

where A and p are constants. The energy contained in wavenumbers greater
than & is

oo
K (r.00) z/ E(n’)dn':%n—@—lh (6.18)
K
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for p > 1, while the integral diverges for p < 1. Similarly the dissipation in
wavenumbers less than k is
20A

o) = /0 2 B() dr' = 27, (6.19)

for p < 3, while the integral diverges for p > 3. Thus, p = g, corresponding
to the Kolmogorov spectrum, is around the middle of the range (1,3) for
which the integrals k(, ) and £(g ) converge. The amount of energy in

. _2 . .
the high wavenumbers decreases as k(.,o) ~ £ # as £ increases, while the

dissipation in the low wavenumbers decreases as £(g ) ~ k3 as k decreases
towards zero.

While the Kolmogorov 7% spectrum applies only to the inertial range,
the observations made are consistent with the notion that the bulk of the
energy is in the large scales (¢ > £g; or k < 2m/fg;), and that the bulk of
the dissipation is in the small scales (¢ < €5, or K > 27 /lp,).

6.1.4 Restatement of the Kolmogorov Hypotheses

In order to deduce precise consequences from them, it is worthwhile to pro-
vide here more precise statements of the Kolmogorov (1941) hypotheses.
Kolmogorov presented these in terms of an N-point distribution in the four-
dimensional x-t space. Here, however, we consider the N-point distribution
in physical space (x) at a fixed time t—which is sufficiently general for most
purposes.

Consider a simple domain G within the turbulent flow, and let x(©, x(1) .

be a specified set of points within G. New coordinates and velocity differ-
ences are defined by

y=x—x, (6.20)

and
v(y) = U(x,t) — U, 1), (6.21)

and the joint PDF of v at the N points y(,y®, ... y(™) is denoted by
In.

Definition of Local Homogeneity. The turbulence is locally
homogeneous in the domain G, if for every fixed N and y(™ (n=
1,2,...,N), the N-point PDF fy is independent of x(©) and
U, 1).

N)
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Definition of Local Isotropy. The turbulence is locally isotropic
in the domain G if it is locally homogeneous and if in addition
the PDF fy is invariant with respect to rotations and reflections
of the coordinate axes.

Hypothesis of Local Isotropy. In any turbulent flow with a
sufficiently large Reynolds number (Re = U L/v), the turbulence
is, to a good approximation, locally isotropic if the domain G is
sufficiently small (i.e., [y | < £, for all n) and is not near the
boundary of the flow or its other singularities.

First Similarity Hypothesis. For locally isotropic turbulence,
the N-point PDF fx is uniquely determined by the viscosity v
and the dissipation rate e.

Second Similarity Hypothesis. If the moduli of the vectors
y™ and of their differences y(™ — y(™) (m # n) are large com-
pared to the Kolmogorov scale 7, then the N-point PDF fy is
uniquely determined by ¢ and does not depend on v.

It is important to observe that the hypotheses apply specifically to velocity
differences. The use of the N-point PDF fx allows the hypotheses to be
applied to any turbulent flow, whereas statements in terms of wavenumber
spectra apply only to flows that are statistically homogeneous (in at least
one direction).

For inhomogeneous flows, local isotropy is possible only “to a good ap-
proximation” (as stated in the hypothesis). For example, taking y(!) = e/

and y(2) = —el (where £ is a specified length and e a specified unit vector),
we have
(viy") =v(y®) = WUEM) -(UE®)
~ 2%3 L LY(U). (6.22)

Evidently this simple statistic is not exactly isotropic, but instead has a
small anisotropic component—of order ¢/L—arising from large-scale inho-
mogeneities.

6.2 Structure Functions

To illustrate the correct application of the Kolmogorov hypotheses we consider—
as did Kolmogorov (1941b)—the second-order velocity structure functions.



